PROYECTO DE INNOVACIÓN EDUCATIVA
TALLER VIRTUAL DE MÁQUINAS Y EQUIPOS FRIGORÍFICOS

UNIDAD DE TRABAJO Nº 1

CALOR Y TEMPERATURA

Profesor: Pascual Santos López
Curso 2004-2005
ÍNDICE

Objetivos: ..6

Contenidos: ..6

Actividades de introducción: ...6

1. Actividad: “Evaluación Inicial” ..6

2. Ejercicios de Evaluación Inicial: ..7

Termodinámica ..11

Calor y frío ..11

1. ¿Qué es calor? ..11

2. Sistemas de unidades: ...11

3. Unidades de calor: ..12

4. Caloría (cal): ..12

5. Efectos del calor: ..13

Temperatura: ..13

1. Escalas de medida de temperatura: ...14

2. Escala Celsius: ..14

3. Escala Fahrenheit: ...15

4. Escalas termodinámicas o absolutas: ...15

5. Relaciones entre las escalas de temperatura: ..15

Profesor: Pascual Santos López
TALLER VIRTUAL DE MÁQUINAS Y EQUIPOS FRIGORÍFICOS
CALOR Y TEMPERATURA

Actividades de aprendizaje:...16

1. Ejercicios de conversión entre escalas de temperatura:................16

2. Realizar los siguientes ejercicios:..17

Transmisión de calor: ..20

1. ¿Cómo se transmite el calor?..20

2. Actividad de aprendizaje:..21

3. Leyes de la termodinámica.- ...22

4. Principio cero de la termodinámica:...22

Calorimetría:..22

1. Calor específico (Ce): [J / Kg x °K] o [Kcal / Kg x °K].-.................22

2. Cantidad de calor (Q). [J y Kcal].-..24

3. Capacidad calorífica (C).- [kcal /°C]...24

Actividades de aprendizaje:...25

1. Realizar los siguientes ejercicios:...25

Actividades de ampliación:...26

Calor sensible y calor latente:...26

Cambios de estado:...28

Fusión y Solidificación:...29

2. Leves de la fusión:...30

3. Calor latente de fusión:..30

Profesor: Pascual Santos López
4. Variación de la temperatura con la presión: 31

Vaporización: 32

5. Evaporación: 32

6. Ebullición: 33

7. Leyes de la ebullición: 33

8. Calor latente de vaporización: 33

9. Variación de la temperatura de ebullición con la presión: 33

Actividades de aprendizaje: 34

1. Realizar las siguientes cuestiones: 34

2. ejercicios relativos a cambios de estado: 41

Apéndice sobre Conocimientos Básicos: 43

Apéndice Sistema Internacional de Unidades de medida: 54

Unidades SI básicas: 54

1º. Unidades SI derivadas: 56

2º. Unidades SI derivadas expresadas a partir de unidades básicas y suplementarias: 56

3º. Unidades SI derivadas con nombres y símbolos especiales: 57

4º. Unidades SI derivadas expresadas a partir de las que tienen nombres especiales: 59

5º. Múltiplos y submúltiplos decimales: 60

6º. Tabla de conversión de unidades: 61
Ejercicios de conversión entre escalas de temperatura: ... 62

Bibliografía: .. 62
Objetivos:

Los objetivos a conseguir tras finalizar esta unidad de trabajo son los siguientes:
1. Conocer las magnitudes fundamentales presentes en los sistemas frigoríficos.
2. Calcular las cantidades de calor en casos prácticos.
3. Conocer y relacionar los sistemas más usuales de medida y sus unidades.
4. Realizar con precisión conversiones de las diferentes magnitudes fundamentales presentes en los sistemas frigoríficos, interpretando sus resultados.
5. Conocer el comportamiento de los fluidos y las leyes de cambio de estado.

Contenidos:

1. Termodinámica.
 ▪ Termometría.
 ▪ Dilatación.
 ▪ Cambios de estado.

Actividades de introducción:

1. Actividad: “Evaluación Inicial”.

El objetivo de esta actividad es comprobar y reforzar ciertos conocimientos básicos de matemáticas y física, que son necesarios para el desarrollo del módulo. Seguiremos la secuencia siguiente:
 ▪ Realizar los ejercicios de Evaluación inicial.
 ▪ En caso de que se requiera, revisar el apéndice, para reforzar estos conocimientos básicos. Se encuentra al final de la unidad.
2. Ejercicios de Evaluación Inicial:

1°. Calcula en tu cuaderno las siguientes potencias:

\[2^2 = 4; \quad 2^0 = 1; \quad 2^4 \times 2^3 = 2^7; \quad 2^{-4} = \frac{1}{16}; \quad (2^2)^2 = 2^4 = \]
\[10^1 = 10; \quad 10^2 = 100; \quad 10^3 = 1000; \quad 10^{-3} = \frac{1}{1000}; \quad 2 \times 2^3 = 2^4 = \]
\[\frac{(a^4)(a^3)}{a} = \frac{a^{4+3}}{a} = \frac{a^7}{a} = a^{7-1} = a^6; \]
\[\frac{(5^4)(5)}{5} = \frac{(a^4)(a^3)}{a^4} = \]
\[\frac{(a^4)(a^5)}{(a^4)(a^2)} = \frac{(5^4)(5^2)}{(5^4)(5)} = \]
\[\frac{(9^2)(9^4)}{(9^3)} = \frac{(13^2)(13^4)}{(13^6)} = \]

¿Problemas con la potenciación?.
Revisar el apéndice de conocimientos básicos al final de la unidad.

2°. Calcula las siguientes raíces:

Por ejemplo: \[\sqrt{4} = (4)^{1/2} = 2; \quad \sqrt[3]{8} = (8)^{1/3} = \]
\[(144)^{1/2} = \quad (16)^{1/2} = \quad (27)^{1/3} = \]

¿Problemas con la radicación?. Revisar el apéndice de conocimientos básicos.
Realiza las siguientes operaciones con números negativos:

a) Ejemplo: \(+6 + (-4) = 2 \)
b) \(6 - (-4) = \)
c) \(6 \cdot (-4) = \)
d) \(-6 \cdot -4 = \)
e) \(6 / (-2) = \)
f) \(-6 / 2 = \)
g) \(-6 / (-2) = \)
h) \(-6 \cdot -6 = \)
i) \(-6 \cdot 4 \cdot -2 = \)

¿Problemas con los paréntesis? Revisar el apéndice de conocimientos básicos.

Resuelve las siguientes ecuaciones lineales:

a) \(-4x = 8 \) ¿Cuánto vale \(x \)?
b) \(10x = 50 \)
c) \(8x = 50 \)
d) \(6x + 10x - 3 = 259 \)
e) \(2x/3 = 100 \)
f) \((3x/2) - 2 = 102 \)
g) \[\frac{2x - 3}{2} - \frac{5x - 1}{3} = 1 \]
h) \(2x + 3 = 4 + 3x \)
i) \[\frac{3}{2}x - 5 = 0 \]
j) \[\frac{x - 3}{5} - \frac{5x + 1}{3} = 1 - x \]
k) \[\frac{3x}{4} - \frac{1}{2} = \frac{x - 2}{6} \]

¿Problemas con las ecuaciones? Revisar el apéndice de conocimientos básicos.
5°. ¿Qué dice el Teorema de Pitágoras?

6°. Hallar c, si a vale 4 y b vale 2:

![Diagrama de un triángulo con etiquetas a, b, c y vértices A, B, C]

7°. La cerca de una casa mide 7m de largo y 3m de ancho. ¿Cuál es su perímetro?
 Datos: 7m 3m

8°. Para cercar el jardín de su casa Pedro compre 30m de alambre, si el ancho del jardín es de 5m. ¿Cuánto mide de largo?
 Datos: 5m Perímetro (P) = 30m

9°. Un cuadro que se va a enmarcar necesita 40cm de moldura en total, y el largo del cuadro mide 15cm. ¿Qué ancho tiene el cuadro?
 Datos: 15cm P = 40cm

10°. Para cerrar un barril que tiene forma pentagonal se requiere darle tres vueltas con alambre de púas si cada lado del barril mide 12cm. ¿Cuánto alambre necesitaré para darle las tres vueltas?
 Datos: 12cm 3 vueltas

¿Problemas con el perímetro? Revisar el apéndice de conocimientos básicos.
11°. Calcular el área de la siguiente figura:

Cuadrado + Triángulo

\[\begin{array}{c}
\text{h} \\
\text{4m} \\
\text{2m} \\
\end{array} \quad \begin{array}{c}
a \\
b \\
\end{array} \]

12°. Si un triángulo tiene un área de 24\(m^2\) y su altura es de 8\(m\) ¿Cuánto mide su base?

13°. Calcular los \(m^2\) de pintura necesaria para una habitación. Si las medidas son ancho 2\(m\), alto 3\(m\), largo 4\(m\), con una ventana cuadrada de 1\(m\) y una puerta de 1,5\(m^2\).

¿Problemas con el área? **Revisar el apéndice de conocimientos básicos.**

14°. Cálculo de volúmenes:

a) Una cisterna de 8\(m^3\) se está llenando de agua, si el nivel está a tres cuartas partes de su capacidad, ¿Qué volumen falta para que se llene?

b) Un depósito en forma de cubo, como el de la figura, tiene un lado de 2\(m\). ¿Cuál será su capacidad total?

\[\text{2m} \]

c) El mismo depósito, pero con 1\(m\) de lado. ¿Cuántos litros totales puede contener?

d) El volumen de un prisma rectangular cuya altura es de 4/5\(m\). El largo de la base es de 3/4\(m\) y el ancho de 1/2\(m\). ¿Cuál es su volumen?. Expresarlo en \(m^3\) y en \(cm^3\).

Datos:

¿Problemas con el volumen? **Revisar el apéndice de conocimientos básicos.**
Termodinámica

La palabra termodinámica proviene de los vocablos griegos thermos (calor) y dynamis (potencia), que describe los esfuerzos por convertir el calor en potencia.

La Termodinámica es una ciencia fundamental que trata de la conversión de energía mecánica en energía térmica y del proceso inverso, es decir, la conversión de calor en trabajo. Hoy día el mismo concepto abarca todos los aspectos de la energía y sus transformaciones, incluidas en la producción de potencia, sistemas de refrigeración y acondicionamiento de aire. Un ejemplo de sistema termodinámico es la máquina de vapor, que produce trabajo a partir del vapor de agua.

Calor y frío

El frío no existe como energía, sino que es la ausencia de calor. Para nosotros es un concepto subjetivo, una forma de hablar. Por ejemplo, decimos que en una habitación hace frío es porque sentimos frío cuando estamos a una temperatura de 8ºC. Aumentemos ahora, con cualquier sistema de calefacción, dicha temperatura hasta los 20ºC, ya no sentiremos frío sino que estaremos a una temperatura confortable. ¿Qué ha ocurrido?. Simplemente, que ha aumentado la energía cinética de las moléculas de aire existentes en la habitación, es decir, ha aumentado la velocidad de sus moléculas, o lo que es lo mismo, el aire ha absorbido calor y ha aumentado su energía interna.

1. ¿Qué es calor?

Calor.- Fenómeno físico que eleva la temperatura y dilata, funde, volatiliza o descompone un cuerpo.
El calor es la cantidad de energía que transfiere un cuerpo caliente a otro frío al ponerlos en contacto.
Un cuerpo posee energía interna, pero no tiene calor. Los cuerpos transfieren calor y, debido a ello, pierden o ganan energía.

2. Sistemas de unidades:

Hoy día dos conjuntos de unidades se utilizan normalmente: el sistema inglés, también conocido como United States Customary System (USCS) y el métrico SI, también conocido como Sistema Internacional.

En el SI las unidades básicas de masa, longitud y tiempo son el kilogramo (kg), el metro (m) y el segundo (s). Las unidades respectivas en el sistema inglés son la libra-masa (lbn), el pie (p) y el segundo (s).
En los cálculos técnicos es fundamental que todas las ecuaciones tengan las unidades homogéneas. Esto es, cualquier término en una ecuación debe tener las mismas unidades. Si en cierta etapa de algún análisis, encontramos en un punto en el que vamos a sumar dos cantidades que tienen unidades diferentes, es una indicación clara que hemos cometido un error en una etapa anterior. De modo que verificar las unidades sirve como una valiosa herramienta para descubrir errores.

3. Unidades de calor:

Las unidades de calor son las mismas que las de trabajo y energía, por tanto, el calor se mide en julios o joules (J), que es la unidad de energía en el Sistema Internacional (SI) de medidas, o en calorías (cal) en el Sistema Técnico de medidas, muy utilizada, aunque debemos acostumbrarnos a utilizar el (J) del SI.

En refrigeración se emplea como unidad equivalente la frigoría (frig), que se define como una Kilocaloría "negativa", es decir, 1 Kcal de calor absorbido.

En el sistema inglés la unidad de calor es la British Thermal Unit (BTU). Un BTU es la cantidad de energía que se necesita para elevar la temperatura de 1 lb de agua 1 °F. Pero esta unidad es muy pequeña, por lo que se emplea más la tonelada de refrigeración (TR), que equivale a 12.000 BTU.

4. Caloría (cal):

Una caloría equivale a 4,18 joules y se define como la cantidad de calor necesaria para que un gramo de agua aumente su temperatura en un grado centígrado (con más precisión, para que su temperatura pase de los 14,5°C a los 15,5°C). La caloría es una unidad pequeña por lo que se suele utilizar más la kilocaloría (Kcal) que equivale a 1.000 calorías.

<table>
<thead>
<tr>
<th>Equivalencias:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Kcal = 1.000 cal</td>
</tr>
<tr>
<td>1.000 cal = 1 Termia</td>
</tr>
<tr>
<td>1 frig = - 1.000 cal</td>
</tr>
<tr>
<td>1cal = 4,185 J</td>
</tr>
<tr>
<td>1 J = 0,24cal</td>
</tr>
<tr>
<td>1 BTU = 0,252 Kcal</td>
</tr>
<tr>
<td>1 TR = 12.000 BTU = 3.024 Kcal</td>
</tr>
</tbody>
</table>

¿Problemas con las unidades? Revisar el apéndice de unidades de medida.
5. Efectos del calor:

El calor dilata los cuerpos: todos los cuerpos, cuando se calientan, aumentan de volumen. La dilatación se produce en todas las dimensiones que posee y cada cuerpo posee un determinado coeficiente de dilatación térmica.

El calor modifica los estados de la materia, convirtiendo los sólidos en líquidos y éstos en gases.

Es importante observar que mientras se produce el cambio de estado no aumenta la temperatura del cuerpo. Al calor, absorbido o cedido, en el cambio de estado se le llama calor latente.

El calor hace variar la temperatura. Al calor, absorbido o cedido, por un cuerpo, al variar su temperatura, se le llama calor sensible.

Temperatura:

La temperatura es el nivel térmico de los cuerpos. Es una forma de medir la energía cinética interna de dicho cuerpo. Para medir la temperatura, se utilizan los termómetros.

En el SI la unidad de temperatura es el kelvin (K), aunque habitualmente utilizamos la escala centígrada de Celsius (ºC) para medir temperaturas.

Para tener una referencia común en las distintas escalas de medida de temperatura se recurre a dos puntos fijos, los cuales, se utilizan para calibrar los termómetros:

- Fusión del hielo = 0 ºC = 273 K a presión atmosférica normal.
- Ebullición del agua = 100 ºC = 373 K a presión atmosférica normal.
- La presión atmosférica normal es 1 atm (atmósfera) medida al nivel del mar, o lo que es lo mismo, 760 mmHg (milímetros de columna de mercurio).
1. Escalas de medida de temperatura:

Las escalas de temperatura que se usan más comúnmente en la actualidad son dos: la Fahrenheit, utilizada en los países anglosajones y la Centigrada o Celsius, usada en el resto de los países europeos y en general en todos los países que han adoptado el sistema métrico decimal.

Las escalas de temperatura, también denominadas termométricas, se definen por dos puntos fijos que delimitan cierto intervalo de temperatura conocido como "intervalo fundamental de temperatura". Dicho intervalo es el comprendido entre dos cambios de estado físicos del agua, es decir, entre la temperatura de fusión del agua (idéntica a la de congelación) y la de ebullición del agua (agua hirviendo) a una presión de 760 mm de columna de Hg (mercurio).

2. Escala Celsius.-

La escala Centigrada o Celsius (°C) asigna el valor "cero" (0°C) al punto de congelación del agua o de fusión del hielo. El punto superior de ebullición del agua (a una presión de 760 mm de Hg) tiene asignado el valor "cien" (100°C). La escala está dividida en cien partes iguales, correspondiendo cada una de ellas a 1°C. Temperaturas por debajo de 0°C se asignan como "negativas", (ver figura).

Fuente: Manual Técnico Valycontrol
3. Escala Fahrenheit.-
En la escala Fahrenheit el punto de congelación del agua (o fusión del hielo) está marcado como $32^\circ F$ y el punto de ebullición del agua (a una presión de 760 mm de Hg) como $212^\circ F$. Entre los puntos de congelación y ebullición del agua se tienen así $180^\circ F$ (grados Fahrenheit), (ver figura anterior. Pág. 12).

4. Escalas termodinámicas o absolutas.-
Para trabajos más científicos, se requiere el uso de temperaturas absolutas (totales), es decir, que no tengan valores negativos. Las escalas absolutas comienzan de cero hacia arriba. El cero absoluto es una temperatura que se determinó matemáticamente, y se supone que a esta temperatura, se detiene el movimiento molecular de cualquier sustancia. Es la temperatura más baja posible en la tierra, y se supone también que en este punto, hay una total ausencia de calor.

Las escalas usadas para medir temperaturas absolutas son la Kelvin (Celsius absoluta) y la Rankine (Fahrenheit absoluta). La Kelvin usa las mismas divisiones o graduaciones que la escala Celsius, y el cero absoluto (0K) equivale a $-273.15^\circ C$. La escala Rankine usa las mismas divisiones que la escala Fahrenheit, y el cero absoluto (0R) equivale a $-460^\circ F$. (ver figura anterior. Pág. 12).

5. Relaciones entre las escalas de temperatura.

En la escala Kelvin el tamaño de un grado es exactamente igual a un grado Celsius y un grado Rankine equivale a un grado Fahrenheit.

La unidad de temperatura en el SI es el Kelvin (K), aunque se permite el uso del ºC.

Se cumple que: \[^\circ C / 100 = (^\circ F - 32) / 180 \]

La escala Kelvin se relaciona con la escala Celsius por medio de

\[K = ^\circ C + 273 \]

La escala Rankine se relaciona con la escala Fahrenheit por medio de

\[R = ^\circ F + 460 \]

La escala Rankine se relaciona con la escala Kelvin por medio de \[R = 1.8 K \]
Actividades de aprendizaje:

De la ecuación \(\frac{°C}{100} = \frac{(°F - 32)}{180} \) despejar la fórmula de los °C en función de los °F y la fórmula de los °F en función de los °C. Simplificando lo más posible la ecuación.

Anotar las dos fórmulas en este espacio del libro para utilizarla en los siguientes ejercicios.

1. Ejercicios de conversión entre escalas de temperatura:

Realizar los siguientes ejercicios:

15°. Pasar de 78° C a °R °F °K

16°. Pasar de 165° F a °C °R °K

17°. Pasar de 590° R a °F °C °K

18°. Pasar de 330° K a °F °C °R

¿Problemas con la conversión?. Revisar el apéndice de ejercicios de conversión.
2. Realizar los siguientes ejercicios:

1°. Anotar que estado refleja cada uno de los tres puntos de las cuatro escalas, a que escalas se refiere y las unidades de cada una.

<table>
<thead>
<tr>
<th>373°</th>
<th>100°</th>
<th>672°</th>
<th>212°</th>
</tr>
</thead>
<tbody>
<tr>
<td>273°</td>
<td>0°</td>
<td>492°</td>
<td>37°</td>
</tr>
<tr>
<td>0°</td>
<td>-273°</td>
<td>0°</td>
<td>-460°</td>
</tr>
</tbody>
</table>

2°. Convertir una lectura de temperatura de 50°C a su equivalente en grados Fahrenheit.

3°. En un termómetro que está sobre la pared de un cuarto se lee 86°F. ¿Cuál es la temperatura del cuarto expresada en °C?

4°. En un termómetro se indica que la temperatura de cierta cantidad de agua se incrementa (Δt) en 45°F por la adición de calor. Expresar dicho incremento (Δt) en grados Celsius (°C).

5°. Un termómetro sobre el depósito de un compresor de aire indica que la...
temperatura del aire en el depósito es de 95°F. Calcular la temperatura absoluta expresada en grados Rankine (°R).

6°. La temperatura del vapor que llega a la succión de un compresor de refrigeración es de -20°F. Expresar la temperatura del vapor en °C y en °R.

7°. Si la temperatura de un gas es de 100°C, ¿cuál es la temperatura en grados Kelvin (K)?.

8°. La temperatura del vapor que sale de una caldera es de 610 °R, ¿cuál es la temperatura en la escala Fahrenheit?, ¿y en la Celsius?.

9°. Convertir las siguientes lecturas de temperaturas Celsius a las equivalentes en Fahrenheit:
 a)25°C b)0°C c)130°C
10°. Convertir las siguientes lecturas de temperaturas Fahrenheit a las equivalentes en la escala Celsius:

a) -10°F b) 80°F c) 215°F

11°. La temperatura del aire que está pasando a través de serpentines de calentamiento se aumenta desde 20°F hasta 120°F. ¿Cuál es el incremento de temperatura (Δt) expresado en °C?

12°. Convertir las siguientes temperaturas Fahrenheit a las temperaturas equivalentes en grados Rankine:

a) 0°F b) -150°F c) 32°F

13°. Convertir las siguientes temperaturas Kelvin a las temperaturas equivalentes en °C.

a) 135K b) 310K c) 273K
Transmisión de calor:

El calor pasa de los cuerpos calientes (nivel térmico más alto T_1) a los cuerpos fríos (nivel térmico más bajo T_2); dicho de otra forma, el calor se transmite de los cuerpos de mayor a menor temperatura.

Siendo la temperatura T_1 mayor que la de T_2, es decir: $T_1 > T_2$

1. ¿Cómo se transmite el calor?

El calor se transfiere de tres diferentes maneras: conducción, convección y radiación.

La conducción es la transferencia de energía por contacto, de partículas más energéticas de una sustancia a las adyacentes menos energéticas, debido a las interacciones entre ellas. La conducción sucede en sólidos, líquidos o gases. No existe desplazamiento de moléculas.

La convección es cuando la transmisión de calor por un cuerpo tiene lugar con desplazamiento de sus moléculas. El emisor de calor de la figura 5.a, calienta el aire más próximo, de esta forma, disminuye el peso específico de dicho aire y se eleva.
El natural empuje ascendente del aire caliente desplaza al aire frío, el cual, a su vez, aumenta de temperatura.

Aparecen así unas corrientes de aire (figura 5.a) denominadas corrientes de convección natural como consecuencia de la diferencia de densidades entre zonas frías y calientes.

Lo mismo ocurriría en el caso en que el fluido a calentar fuese agua (figura 5.b) u otro cualquiera. Si calentamos el agua -en este caso- aplicando calor procedente de una llama, el agua del fondo se calentará (por conducción en primera instancia), se hará menos densa y ascenderá hacia la superficie, mientras que el agua fría pasará a ocupar el fondo, estableciéndose las correspondientes corrientes de convección lo que hará que finalmente toda la masa de agua termine alcanzando la misma temperatura.

El transporte de calor por el fenómeno de convección, es el fundamento en que está basado el efecto termosifón, por el cual (sobre todo en antiguas instalaciones de calefacción) el agua caliente se mueve desde la caldera hasta los radiadores de forma natural gracias a las mencionadas corrientes de convección.

Cuando se fuerza por algún medio el fenómeno de la convección haciendo que las corrientes sean más activas (uso de ventiladores o bombas de impulsión según se trate de aire o agua respectivamente), recibe el nombre de convección forzada.

La radiación es la energía emitida por la materia mediante ondas electromagnéticas (o fotones), como resultado de los cambios en las configuraciones electrónicas de los átomos o moléculas. A diferencia de la conducción y de la convección, la transferencia de energía por radiación no requiere la presencia de un medio entre el sistema y sus alrededores. Nuestro amigo, el felino de la página anterior, se calienta muy bien gracias a la radiación.

2. Actividad de aprendizaje:

Anotar y explicar dos ejemplos de cada una de las formas de transmisión de calor:
3. Leyes de la termodinámica.-

Enunciamos al inicio de la unidad que la termodinámica estudia las transmisión de calor en trabajo y viceversa. Consta de tres leyes o principios fundamentales:

1º. Ley 0 (Definición de Temperatura y equilibrio térmico)

2º. Primera Ley (Conservación de la energía)

3º. Segunda ley (Crecimiento de la Entropía)

4. Principio cero de la termodinámica:

Principio cero: Dos cuerpos están en equilibrio térmico si tienen la misma temperatura, incluso, si no se encuentran en contacto.

Equilibrio térmico: Cuando dos o más objetos en contacto térmico unos con otros alcanzan la misma temperatura, el calor deja de fluir entre ellos y decimos que están en equilibrio térmico.

La propiedad que iguala a los sistemas en equilibrio térmico se llama temperatura. Podemos decir ahora que:

- Si dos cuerpos tienen la misma temperatura están en equilibrio térmico.
- Si dos cuerpos tienen temperaturas diferentes, no están en equilibrio térmico.

Nota: Los demás principios los estudiaremos en las siguientes unidades de trabajo.

Calorimetría:

1. Calor específico (Ce): [J / Kg x °K] o [Kcal / Kg x °K].-

Se llama calor específico de una sustancia, a la cantidad de calor necesaria para elevar la temperatura de 1Kg de la misma en 1°K, dentro de un intervalo de temperatura.
La unidad de Ce en el SI es $J / (Kg \times ^{°}K)$, si bien la que se usa, normalmente, es: Kcal / (Kg $\times ^{°}K$), o también, Kcal / (Kg $\times ^{°}C$), que es lo mismo. Su fórmula es:

$$Ce = \frac{Q}{m \times \Delta t}$$

Siendo:

- $Q = $ Cantidad de calor suministrado en Kcal o Kcal/h.
- $Ce = $ calor específico de cada sustancia en Kcal / (Kg $\times ^{°}K$).
- $m = $ masa en Kg o caudal másico en Kg / h.
- $\Delta t = t_f - t_i = $ salto de temperaturas.
- $t_f = $ Temperatura final.
- $t_i = $ Temperatura inicial.

Para el transporte de calor, como es el caso de la calefacción, interesa utilizar sustancias que tengan un Ce alto, ya que, de esta forma, se necesita menos masa, para transportar la misma cantidad de calor.

Por ejemplo, el Ce del agua es 1 Kcal / (Kg $\times ^{°}C$) y es cuatro veces superior al del aire que es de 0,24 Kcal / (Kg $\times ^{°}C$).

Dependiendo de que unidades usemos los valores de "calor específico" que posee cada sustancia o materia cambiarán, por ejemplo en el SI, el agua tiene un calor específico de 4,18 $J / g \times ^{°}C$. Este valor muestra que se absorben 4,18 Joules de energía de calor cuando se aumenta la temperatura de un gramo de agua en un grado centígrado.

Si empleamos la Kcal y los Kg diremos que el calor específico del agua es 1 Kcal / Kg $\times ^{°}C$, que es la más usada y también podemos emplear: 1 cal / g $\times ^{°}C$.

Cada sustancia tiene su propio "calor específico". A continuación se exponen los valores del calor específico de algunas sustancias, donde se podrá observar que la que mayor valor tiene es el agua.

CALOR ESPECÍFICO DE ALGUNAS SUSTANCIAS EN: (Kcal / Kg $\times ^{°}C$)

<table>
<thead>
<tr>
<th>Sustancia</th>
<th>Valor (Kcal / Kg $\times ^{°}C$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acero</td>
<td>0,117</td>
</tr>
<tr>
<td>Fundición</td>
<td>0,130</td>
</tr>
<tr>
<td>Estaño</td>
<td>0,056</td>
</tr>
<tr>
<td>Agua</td>
<td>1</td>
</tr>
<tr>
<td>Mercurio</td>
<td>0,033</td>
</tr>
<tr>
<td>Vidrio</td>
<td>0,192</td>
</tr>
<tr>
<td>Alcohol</td>
<td>0,7</td>
</tr>
<tr>
<td>Gasoil</td>
<td>0,490</td>
</tr>
<tr>
<td>Cinc</td>
<td>0,096</td>
</tr>
<tr>
<td>Bronce</td>
<td>0,086</td>
</tr>
<tr>
<td>Plomo</td>
<td>0,031</td>
</tr>
<tr>
<td>Hierro</td>
<td>0,114</td>
</tr>
</tbody>
</table>

Profesor: Pascual Santos López
2. Cantidad de calor (Q). [J y Kcal].-
A partir de la definición anterior del calor específico, la cantidad de calor (Q), necesaria para elevar la temperatura de una masa dada (m) desde su temperatura inicial (t_i) hasta la temperatura final (t_f), será:

\[Q = m \times C_e \times \Delta t = m \times C_e \times (t_f - t_i) \]

Siendo:
- \(Q \) = Cantidad de calor suministrado en Kcal o Kcal/h.
- \(C_e \) = calor específico de cada sustancia en Kcal / (Kg \times ^\circ\text{K}).
- \(m \) = masa en Kg o caudal másico en Kg / h.
- \(\Delta t \) = \(t_f - t_i \) = salto de temperaturas.
- \(t_f \) = Temperatura final.
- \(t_i \) = Temperatura inicial.

3. Capacidad calorífica (C).- [kcal /°C]
La capacidad calorífica de un cuerpo es la cantidad de calor necesaria para elevar su temperatura en 1 °C, o lo que es lo mismo en 1 °K.
Si \(m \) es la masa del cuerpo y \(C_e \) su calor específico, la capacidad calorífica será:

\[C = m \times C_e \]
(ya que en este caso \(\Delta t = t_f - t_i = 1^\circ\text{C} \))

Por eso para transportar calor conviene sustancias que tengan elevada capacidad calorífica, ya que pueden transportar el mismo calor con menos masa.

De ahí -entre otras razones- que se use el agua para transportar calor desde una sala de calderas hasta los radiadores de la instalación.

1°. Ejemplo ilustrativo respecto al concepto de capacidad calorífica.

- Para pasar de 10°C a 50°C una masa de 10 Kg de agua harán falta:

\[Q = m \times C_e \times (t_f - t_i) = 10 \times 1 \times (50 - 10) = 400 \text{ Kcal} \]
Para pasar de 10°C a 50°C una masa de 10 Kg de hierro harán falta:

\[Q = m \times C_{e} \times (t_{f} - t_{i}) = 10 \times 0.114 \times (50 - 10)^{2} = 45.6 \text{ Kcal} \]

Los resultados demuestran que para una misma masa (10 Kg) y para el mismo incremento de temperatura, el agua habrá captado mayor cantidad de calor que el hierro.

Si consideramos el caso a la inversa, cuando 1Kg de agua baja 1°C su temperatura, se desprende 1 Kcal, y si fuese hierro, se desprendían solamente 0,114 Kcal.

2°. Otro ejemplo ilustrativo de capacidad calorífica:

Supongamos un radiador como el de la figura, por el que circula un caudal de agua de 50 litros/hora, lo que equivale a una masa de 50kg/h. Si la temperatura de entrada es de 85°C y el radiador se eligió en catálogo para un salto térmico de 20°C, la salida será a 65°C.

La emisión de calor, o potencia calorífica del radiador será:

\[50\text{kg/h} \times 1\text{Kcal/kg °C} \times (85°C - 65°C) = 1.000 \text{ Kcal/h} \]

Mientras más se enfríe el agua más potencia tendrá y viceversa. Así, si el radiador es pequeño y no tiene suficiente superficie y el agua solamente se enfría 10°C, saliendo a 75°C, la emisión de calor será:

\[50\text{kg/h} \times 1\text{Kcal/Kg °C} \times (85°C - 75°C) = 500 \text{ Kcal/h} \]

Actividades de aprendizaje:

1. Realizar los siguientes ejercicios:

 Ejemplo:

 Se calientan diez gramos de agua, de 5°C a 20°C. ¿Cuánta energía calorífica absorbe el agua?

 \[Q = (20°C - 5°C) \times 10\text{gr} \times 4.18 \text{ J/gr°C} = 627 \text{ Joules} \]

1.- ¿Cuántas calorías ceden 50kg de cobre al enfriarse desde 36°C hasta -4°C?

2.- Un bloque de acero (Ce = 0,12) de 1,5 toneladas se calienta hasta absorber 1,8x10⁶cal. A qué temperatura queda si estaba a 10°C?
3.- ¿Cuál es la capacidad calorífica a de una caja de latón si tiene una masa de 250gr?

4.- ¿Cuántas calorías absorbe una barra de hierro cuando se calienta desde -4°C hasta 180°C, siendo su masa de 25kg?

5.- ¿Qué masa tiene una plancha de cobre si cede 910cal al enfriarse desde 192°C hasta -8°C?

6.- ¿Cuántas calorías absorbe 1/4 litro de mercurio (densidad = 13,6; masa = densidad por volumen) cuando se calienta desde -20°C hasta 30°C?

7.- Para calentar 3/4 litros de mercurio que están a 5°C se absorben 6,6Kcal. ¿A qué temperatura queda?

8.- Se tienen 2,5 toneladas de hierro que ceden 2,2x10⁶cal al enfriarse desde 1000°C. ¿A qué temperatura queda?

Actividades de ampliación:

9.- Una fábrica necesita comprar un calefactor para precalentar acero en un tren de laminación.

Acero almacenado en la calle a 10°C.

Tª de precalentamiento 30°C.

Ce acero = 0,116 Kcal/Kg°C.

¿Cuánto calor debe añadirse al acero si el tren de laminación consume 1000Kg/h de este material?

Calor sensible y calor latente:

La aportación de energía calorífica a una sustancia puede cambiar su temperatura y su estado o fase.

- La energía que provoca un cambio de temperatura se llama **CALOR SENSIBLE**.
- La energía que provoca un cambio de fase se llama **CALOR LATENTE**.

CALOR SENSIBLE: Es la energía empleada en la variación de temperatura, de una sustancia cuando se le comunica o sustraen calor.

CALOR LATENTE: Es la energía que, sin afectar a la temperatura, es necesario adicionar o sustraer a una sustancia para que cambie su estado físico.

CALOR TOTAL: (ENTALPIA): Es la suma de calor sensible y latente en kilocalorías, por kilogramo de una sustancia, entre un punto arbitrario de referencia y la temperatura y estado considerado.
El calor sensible, llamado así porque se puede medir, se calcula con la misma fórmula que la cantidad de calor y siempre tiene que haber una variación de temperatura:

\[Q = m \cdot C_e \cdot (t_f - t_i) \]

El calor latente, se llama así porque esta oculto y no se aprecia un cambio de temperatura. El calor latente (de fusión o de vaporización) se calcula:

<table>
<thead>
<tr>
<th>CALOR LATENTE DE FUSIÓN</th>
<th>CALOR LATENTE DE VAPORIZACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q = m \cdot L_f)</td>
<td>(Q = m \cdot L_v)</td>
</tr>
</tbody>
</table>

Ejemplo: Para el agua existen dos calores latentes el de vaporización, necesario para evaporar 1Kg de agua, \(L_v = 540 \text{Kcal/Kg} \); y el de fusión, necesario para fundir 1Kg de hielo, \(L_f = 80 \text{Kcal/Kg} \).

Calculemos el calor total o entalpía necesaria para transformar 1Kg de hielo a 0°C a 1Kg de vapor a 100 °C:

- De hielo a 0°C hasta agua a 0°C: \(Q = m \cdot L_f = 1 \text{Kg} \cdot 80 \text{Kcal/Kg} = 80 \text{Kcal} \) que serían latentes (existe cambio de estado).
- De agua a 0°C hasta agua a 100°C: \(Q = m \cdot C_e \cdot (t_f - t_i) = 1 \text{Kg} \cdot 1 \text{Kcal/Kg°C} \cdot (100°C - 0°C) = 100 \text{Kcal} \), que serían sensibles, ya que existe aumento de temperatura.
- De agua a 100°C hasta vapor a 100°C: \(Q = m \cdot L_v = 1 \text{Kg} \cdot 540 \text{Kcal/Kg} = 540 \text{Kcal} \) que serían latentes (existe cambio de estado).
- En total, entre calor sensible y latente se aportan: \(80 + 100 + 540 = 720 \text{Kcal} \), que es la entalpía del vapor de agua a 100°C, con respecto al hielo a 0°C.

Se puede calcular la cantidad de calor total mediante la fórmula siguiente:

\[Q = m \cdot (h_f - h_i) \]

Siendo:
- \(Q \) = Cantidad de calor total suministrado en Kcal o Kcal/h.
- \(m \) = masa en Kg o caudal masico en Kg / h.
- \(h_f \) = Entalpía final.
- \(h \) = Entalpía inicial.

Esta fórmula es general y sirve en todos los casos, haya o no cambio de estado.

La siguiente figura representa los cambios de temperatura y de estado que se producen al suministrar calor al agua (a 1 atmósfera de presión, es decir a presión atmosférica). Partiendo de Hielo a 0 °C se le puede suministrar calor sin cambiar su temperatura hasta que se funde y a 100 °C, si se le añade calor, se evapora todo el agua sin aumentar su temperatura. Este ‘calor latente’ rompe los enlaces que
mantienen unidas las moléculas, pero no aumenta su energía cinética y por tanto, no sube su temperatura.

Cambios de estado:

Como ya es sabido, cada sustancia puede existir en tres formas o estados físicos diferentes: **Sólido, Líquido y Gaseoso.**
Entendemos por "cambio de estado" como los pasos de un estado físico a otro. También se llama cambio de fase.

En el gráfico de la figura quedan indicados los cambios de estado posibles, pudiendo quedar clasificados en los dos grupos siguientes:

Cambios de estado **"PROGRESIVOS"**: son aquellos que se verifican, es decir, se producen con absorción de calor y, generalmente, van acompañados de un aumento de volumen. Son los siguientes:

- Fusión
- Vaporización
- Sublimación

Cambios de estado **"REGRESIVOS"**: son aquellos que se verifican, es decir, se producen con desprendimiento de calor y, generalmente, van acompañados de una disminución de volumen. Son los siguientes:

- Solidificación (congelación)
- Licuefacción (gas) o Condensación (vapor)
- Sublimación Inversa o Deposition

Fusión y Solidificación:

La fusión / solidificación es un cambio de fase sólida a líquida ó líquida a sólida (según se trate de uno u otro caso), lo cual conlleva una transformación "violenta" de sus propiedades.
Para que empiece a producirse este cambio de estado, se ha de llegar a la “temperatura de cambio de estado” (temperatura de fusión, que es la misma que la de solidificación), para lo cual, habrá que aumentarla calentando la sustancia (si se trata de la fusión) o disminuirla enfriándola (si se trata de la solidificación).

Todo el calor transferido durante el cambio de estado se llama calor latente.

Todo el calor transferido antes y después del cambio de estado se llama calor sensible.

2. Leves de la fusión:

1° Para una presión determinada, cada sustancia tiene su temperatura de fusión característica, idéntica a la de solidificación.

2° Mientras dura el proceso de fusión o solidificación, la temperatura permanece constante.

3. Calor latente de fusión:

Calor de fusión de una sustancia se conoce como "calor de fusión" (o calor latente de fusión) es el número de calorias necesarias para fundir la unidad de masa de la misma, una vez alcanzada la temperatura de fusión y permaneciendo ésta constante.

Por ejemplo, 0°C en el Hielo, como se puede apreciar en la figura.
La cantidad de calor para fundir una masa \(m \) se determina mediante la siguiente expresión:

\[Q = m \cdot L_f \]

\(Q \) = Cantidad de calor, \(m \) = Masa y \(L_f \) = Calor latente de fusión de la sustancia.

Temperatura de fusión y calor de fusión de algunas sustancias (a la presión de 760 mm Hg)

<table>
<thead>
<tr>
<th>Sustancias</th>
<th>Temperatura de fusión (°C)</th>
<th>Calor de fusión (Kcal/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>Aluminio</td>
<td>657</td>
<td>77</td>
</tr>
<tr>
<td>Cobre</td>
<td>1083</td>
<td>42</td>
</tr>
<tr>
<td>Hierro</td>
<td>1540</td>
<td>48</td>
</tr>
<tr>
<td>Plomo</td>
<td>327</td>
<td>5.5</td>
</tr>
</tbody>
</table>

4. Variación de la temperatura con la presión

Durante la fusión todos los cuerpos aumentan de volumen, excepto el hielo y el hierro de fundición, que lo disminuyen. Al comprimir un cuerpo (al aumentarle la presión) se dificulta dicho aumento de volumen y por lo tanto se estará dificultando el fenómeno de la fusión. En consecuencia podemos afirmar que al aumentar la presión, la temperatura de cambio de estado aumenta (figura 3).

En el caso del hielo y el hierro de fundición, ocurre al revés, es decir: al aumentar la presión la temperatura de fusión disminuye.

La gráfica en ese caso sería la que muestra la figura 4, tomando como ejemplo el caso del hielo.
A presión de 760 mm Hg la temperatura de fusión del hielo es de 0°C. Si aumenta la presión sobre el hielo, este fundirá a menos de 0°C. Si disminuye la presión por debajo de 760mm Hg el hielo fundirá a menos de 0°C.

Vaporización:

Es el paso de estado líquido a estado de vapor. Este cambio de estado se puede verificar de dos formas:

1. En la superficie del líquido y a cualquier temperatura (EVAPORACIÓN).
2. En toda la masa del líquido y a temperatura constante (EBULLICIÓN)

Un líquido al vaporizarse lo hace absorbiendo calor de su alrededor. Por ejemplo al pulsar un spray se enfría nuestro dedo.

5. Evaporación:

Se denomina evaporación al proceso mediante el cual un líquido se transforma en gas, de manera que el paso de moléculas de un estado a otro tiene lugar únicamente en la superficie del líquido, y a cualquier temperatura.

En función de la mayor o menor facilidad de evaporación de un líquido podemos hablar de líquidos volátiles o de líquidos fijos.

Líquidos volátiles: Transformación fácil de líquido a gas (éter, alcohol, gasolina, etc.).

Líquidos fijos: Apenas se ven afectados por la evaporación (glicerina, mercurio, etc.).
6. Ebullición:
Se denomina ebullición a la vaporización rápida que tiene lugar en toda la masa de un líquido cuando este alcanza la temperatura de ebullición.

7. Leyes de la ebullición
1°. Para una sustancia determinada y a una presión determinada, la ebullición comienza siempre a la misma temperatura, denominada temperatura de ebullición, idéntica a de licuefacción.
2°. Mientras dura la ebullición, la temperatura permanece constante.

8. Calor latente de vaporización:
Calor de vaporización de una sustancia es la cantidad de calor que se precisa suministrar a la unidad de masa de la misma para que pase al estado de vapor, una vez alcanzada la temperatura de ebullición.
La cantidad de calor necesaria para vaporizar una masa m viene determinada por la expresión:

$$Q = m \cdot Lv$$

donde $Q = \text{Calor necesario}$, $m = \text{masa}$, $Lv = \text{calor de vaporización}$.

En la siguiente tabla podemos ver algunas sustancias con su temperatura de ebullición a presión constante de 760 mm Hg y su calor de vaporización.

<table>
<thead>
<tr>
<th>Sustancia</th>
<th>T° de ebullición $\circ C$</th>
<th>Calor de vaporización (Kcal/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGUA</td>
<td>100</td>
<td>538</td>
</tr>
<tr>
<td>ALCOHOL</td>
<td>78.5</td>
<td>208</td>
</tr>
<tr>
<td>ÉTER</td>
<td>35</td>
<td>91</td>
</tr>
<tr>
<td>MERCURIO</td>
<td>360</td>
<td>68</td>
</tr>
</tbody>
</table>

9. Variación de la temperatura de ebullición con la presión:
La temperatura de ebullición de un líquido, depende de la presión a la que este se encuentre, de tal forma que a cualquier presión dada le corresponde un punto de ebullición.
Si aumentamos la presión sobre un líquido, estamos dificultando el fenómeno de la evaporación y por tanto el punto de ebullición aumenta, es decir, se precisa elevar más la temperatura para que comience la ebullición.
Actividades de aprendizaje:

1. Realizar las siguientes cuestiones:
Las preguntas van seguidas por cuatro respuestas posibles de las cuales una es la correcta.
Rodear la respuesta correcta.

1) Se dice que dos cuerpos están a la misma temperatura, cuando:
a) ambos tienen la misma cantidad de calor
b) la energía total de las moléculas de uno es igual a la energía total de las moléculas del otro
c) ambos ganan calor en la misma proporción
d) al ponerse en contacto no se transfiere calor.

2) Cuando se mide la temperatura de una persona que tiene fiebre es conveniente esperar algunos minutos para que:
a) el calor que absorbe el termómetro sea igual al que absorbe el enfermo
b) el calor que cede el termómetro sea igual al que cede el enfermo
c) el calor que absorbe el termómetro sea mayor al que cede el enfermo
d) el termómetro llegue al equilibrio térmico con el cuerpo del enfermo.

3) Se sumerge el bulbo de un termómetro en agua hirviendo para luego sacarlo y observar el cambio de temperatura de este a medida que transcurre el tiempo
El gráfico que mejor representa el cambio de temperatura en función del tiempo es:

4) Suponga una masa de hielo a 0 ºC que se encuentra dentro de un recipiente aislado que contiene agua también a 0 ºC.

¿Qué le sucederá en este caso?
- a) nada
- b) todo el hielo se funde
- c) sólo una parte del hielo se funde
- d) toda el agua se congela.

5) Un globo con aire en su interior y con su válvula amarrada se encuentra expuesto al Sol. Después de cierto tiempo se observa que el volumen del globo ha aumentado. Lo anterior es una evidencia de que:
- a) ha ingresado aire al interior del globo
- b) el aire aumentó su temperatura y se dilató
- c) la goma del globo hace menor fuerza para mantener al aire en su interior
- d) aumentó la masa del globo.
6) El calor que se necesita entregarle a 2 litros de agua para eleve su temperatura desde 20 ºC a 60 ºC es:
 a) 80 cal
 b) 2.000 cal
 c) 80.000 cal
 d) 120.000 cal.

7) El calor específico del agua es 1 cal/g ºC y del cobre es de 0,09 cal/g ºC. De lo anterior se deduce que si tenemos 1 kg de agua y 1 kg de cobre resulta
 a) más fácil elevar o disminuir la temperatura del agua que del cobre
 b) más fácil elevar o disminuir la temperatura del cobre que la del agua
 c) que como son masas iguales, se necesita la misma cantidad de calor para cambiar la temperatura
 d) más fácil elevar las temperatura del agua, pero más difícil bajarla que el cobre.

8) Cuando el agua comienza a hervir, las burbujas que se forman en el fondo suben rápidamente hacia la superficie. Estas burbujas son
 a) de aire y están a la misma temperatura que el agua
 b) de aire y están a mayor temperatura que el agua
 c) de vapor de agua y están a la misma temperatura que el agua
 d) de vapor de agua y están a mayor temperatura que el agua

9) Una cuchara de metal se encuentra dentro de una taza de café caliente. La cuchara se siente caliente pues el calor se transmite hacia la mano por:
 a) conducción
 b) convección
 c) radiación
 d) conducción y convección

10) Los beduinos en el desierto cubren todo su cuerpo con túnicas blancas. De esa manera:
 a) el blanco refleja parte de la radiación del Sol y las gruesas túnicas evitan la conducción del calor ambiente hacia el interior de su cuerpo
 b) el blanco refleja parte de la radiación de su cuerpo y las gruesas túnicas evitan la conducción del calor ambiente hacia el ambiente exterior
 c) el blanco absorbe radiación y la ropa permite la convección
 d) se protegen de los cambios de temperatura en el día.
11) Se suelta una pluma sobre la llama de una vela y se observa que
la pluma se eleva. Con esta observación queda en evidencia que:
a) la pluma flota en el aire ya que es más liviana que este gas
b) la pluma gana energía calórica que se transforma en movimiento
c) la pluma aumenta su temperatura
d) el aire sube por convección arrastrando a la pluma.

12) Cuando un líquido se evapora; su temperatura:
a) disminuye porque las moléculas que lo abandonan son las que tienen
más energía.
b) disminuye porque el vapor que sale posee mayor temperatura
c) aumenta porque se necesita más calor para evaporar
d) queda exactamente igual.

13) La temperatura de un cuerpo está asociada a:
a) la cantidad de calor que absorbe
b) la cantidad de masa del cuerpo
c) la energía cinética media de las moléculas de la sustancia
d) lo frío o caliente que esté un cuerpo.

14) El termómetro de mercurio se basa en el fenómeno de:
a) dilatación de los cuerpos con la temperatura
b) cambio de fase de sólido a líquido
c) en punto de fusión del mercurio
d) vasos comunicantes

15) Se introduce un termómetro en una taza que contiene una pequeña
cantidad de agua caliente. La temperatura que marca el termómetro,
en realidad es:
a) mayor de la que tenía el agua antes de sumergir el termómetro
b) levemente menor a la que tenía el agua antes de sumergir el
termómetro
c) igual a la que tenía el agua antes de sumergir el termómetro
d) sólo igual a la que tenía el agua antes de sumergir el termómetro
 si no se pierde calor hacia el medio ambiente.
16) Se tienen dos tazas de agua caliente. La taza M contiene 200 gramos de agua a 30 ºC y la tasa N contiene 50 gramos de agua a la 60 ºC. Si se vierte el contenido de N en M de modo que no exista perdida de calor, la temperatura a la que llegará la mezcla es:

a) mayor a 60 ºC
b) igual a 60 ºC
c) un valor entre 30 y 60 ºC
d) menor a 30 ºC.

17) El calor que se requiere para elevar la temperatura de un gramo de agua en un ºC se llama:

a) Joule
b) Caloría
c) Kelvin
d) Celsius

18) Cuando una pelota de ping pong se pisa y queda abollada se puede lograr que quede igual que antes si se coloca en agua hirviendo. Esto se explica porque:

a) el plástico de la pelota se comprime
b) el aire de la pelota se comprime
c) las burbujas del agua hirviendo inflan a la pelota
d) el aire en el interior de la pelota se dilata.

19) La tuerca colocada en el perno de la figura se encuentra “agripada”, lo que significa que no se puede aflojar con la llave por estar pegada.

Una forma de lograr aflojar la tuerca sería calentar:

a) al perno
b) la tuerca
c) la tuerca junto con el perno
d) la llave.
20) En una región nevada se observa los techos de dos casas, uno cubierto con nieve y el otra con su techo sin nieve. Si ambas casas tienen encendido el mismo sistema de calefacción se puede concluir que la casa con el techo cubierto con nieve:

a) posee un mal aislamiento térmico
b) posee un buen aislamiento térmico
c) posee igual aislamiento térmico que la que no tiene nieve
d) está tan fría por dentro como por fuera.

21) La figura muestra a una barra metálica que es calentada en un extremo por la llama de un mechero. Si se mantiene la barra mucho tiempo en esa posición existe posibilidad que la persona se queme la mano porque:

a) el calor es transmitido desde el mechero a la mano por conducción en el metal
b) el calor es transmitido desde el mechero a la mano por radiación en el metal
c) el calor es transmitido desde el mechero a la mano por convección del aire
d) el calor es transmitido desde el mechero a la mano por radiación en el aire.

22) Los sólidos se dilatan cuando aumentan su temperatura porque:

a) el calor que absorbe el cuerpo ocupa un espacio entre las moléculas y las separa.
b) el calor que absorbe dilata a los átomos y los separa.
c) el calor que absorbe incrementa la fuerza de repulsión entre las moléculas.
d) el calor que absorbe incrementa la agitación de las moléculas.

23) Los fabricantes de colonias y perfumes combinan los extractos aromáticos con alcohol. El alcohol presente en esas lociones tiene como objeto:

a) que se evapore rápidamente al contacto con la piel arrastrando el aroma al entorno
b) que se evapore lentamente al contacto con la piel arrastrando el aroma al entorno
c) que se condense en la piel dejando escapar sólo el aroma
d) entregar calor a la piel.
24) Cuando el agua en forma de vapor se condensa, el aire de su entorno:
 a) aumenta su temperatura
 b) disminuye su temperatura
 c) mantiene su temperatura
 d) depende de la temperatura del líquido

25) Colocar el número asociado que resulte más conveniente en el espacio libre antes de cada palabra de la columna de la derecha

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Se forma una capa de agua en un vidrio frío</td>
<td>a) temperatura</td>
</tr>
<tr>
<td>2</td>
<td>m c ΔT</td>
<td>b) pérdida de calor</td>
</tr>
<tr>
<td>3</td>
<td>la materia más abundante en el universo</td>
<td>c) aislante</td>
</tr>
<tr>
<td>4</td>
<td>los cuerpos en contacto llegan a la misma temperatura</td>
<td>d) condensación</td>
</tr>
<tr>
<td>5</td>
<td>hace frío</td>
<td>e) energía cinética media</td>
</tr>
<tr>
<td>6</td>
<td>no transmite el calor</td>
<td>f) metales</td>
</tr>
<tr>
<td>7</td>
<td>aumenta con el viento</td>
<td>g) rapidez de evaporación</td>
</tr>
<tr>
<td>8</td>
<td>expansión de un cuerpo debido al aumento de la temperatura</td>
<td>h) agua</td>
</tr>
<tr>
<td>9</td>
<td>es necesario un alto valor del calor específico</td>
<td>i) dilatación</td>
</tr>
<tr>
<td>10</td>
<td>buenos conductores del calor</td>
<td>j) variación de la longitud</td>
</tr>
<tr>
<td>11</td>
<td>dilatación lineal</td>
<td>k) equilibrio térmico</td>
</tr>
<tr>
<td>12</td>
<td>la temperatura constituye una medida</td>
<td>l) convección</td>
</tr>
<tr>
<td>13</td>
<td>se produce en el agua a 0 ºC</td>
<td>m) sublimación</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n) solidificación</td>
</tr>
<tr>
<td></td>
<td></td>
<td>o) vacío</td>
</tr>
</tbody>
</table>
2. ejercicios relativos a cambios de estado.

En los siguientes ejercicios considerar calor de fusión del agua 80 cal/g y calor de vaporización 540 cal/g.

1.- Se tiene un trozo de hielo de 1 kg a una temperatura de -40 °C ¿Cuánto calor se necesita para transformarlo a vapor de agua?

2.- Hallar el calor que se debe extraer de 20 g de vapor de agua a 100 °C para condensarlo y enfriarlo hasta 20 °C. (1,24x10^4 cal)

3.- Hallar el número de kilocalorías absorbidas por una nevera eléctrica al enfriar 3 kg de agua a 15 °C y transformarlos en hielo a 0 °C. (285 Kcal)

4.- Calcular la cantidad de calor necesaria para transformar 10 g de hielo a 0 °C en vapor a 100 °C. (7,2 Kcal)

5.- Calcular el calor necesario para fundir un cubo de hielo de 200 g que se encuentra a 0°C. (16 Kcal)

6.- Resolver el problema anterior en el supuesto de que el hielo se encuentre a -24°C. S: Q 18,30 cal

7.- Hallar la temperatura resultante de la mezcla de 150 g de hielo a 0°C y 300 g de agua a 50°C. (6,7°C aprox.)

8.- Hallar la temperatura de la mezcla de 1 kg de hielo a 0 °C con 9 Kg de agua a 50 °C. (37 °C)

9.- Se hacen pasar 5 kg de vapor de agua a 100 °C por 250 kg de agua a 10 °C. Hallar la temperatura resultante. (20,25 °C)

10.- Calcular la temperatura final que resultará al sumergir 2 kg de hielo a -10°C en 10 litros de agua a 20°C. S: t = 2,5°C.

11.- En un recipiente de masa despreciable se colocan conjuntamente 20 g de hielo a -10°C y 400 g de agua a 30°C. Determinar el estado final del sistema (estado y temperatura). S: líquido a 24,7°C

12.- Calcular la masa de agua a 60°C que se debe poner en contacto con 10 g de hielo a 0°C para que la mezcla quede a 10°C. S: m = 18 g
13.- A un radiador llegan cada minuto 2.000 g de vapor de agua a 100°C, que salen convertidos en agua a 78°C. Calcular el calor emitido por el radiador en ese tiempo.
S: $Q = 1.120 \text{ Kcal}$.

14.- Sobre una barra de hielo a 0°C se coloca un trozo de hierro (c = 0,11) de 30 g que se encuentra a 900°C. Calcular la masa de hielo que se fundirá,
S: $m = 37,12\text{o}^\circ\text{C}$

15.- El trozo de hierro del ejercicio anterior se introduce en un recipiente que contiene 1,5 litros de agua a 14°C. Calcular la masa de agua que se vaporizará.
S: no se vaporizará nada de agua.

16.- ¿Qué temperatura alcanzará el agua, en el ejercicio anterior, sabiendo que no se vaporiza nada de agua.
S: 16°C.

17.- Calcular cuántos gramos de éter se deben evaporar en un frigorífico para que éste consiga helar 20 g de agua a 0°C.
S: $m = -17,58\text{ g}$

18.- Introducimos una masa de hielo de 3 kg a -5°C en 10 litros de agua a 10°C. Averiguar si el hielo llegará a fundir completamente o no. En el supuesto de que no llegara a fundir del todo, calcular la cantidad de calor adicional que habría que aportar de más, aportando (calentándolo) para que, finalmente se fundiera todo el hielo.
S: no llega, a fundir todo. Faltarían: $240 - 92,8 = 147,2 \text{ Kcal}$.
Apéndice sobre Conocimientos Básicos:

1. Conceptos de Aritmética:

La potenciación es la operación inversa de la raíz, consiste en multiplicar por sí mismo un número llamado base tantas veces como lo indique el exponente, y al resultado de esa operación se le llama potencia. Se representa de la siguiente forma:

\[\text{base} \rightarrow \text{exponente} \rightarrow \text{potencia} \]

- Potencia de un número.- Se multiplica, por sí mismo, las veces que indique el exponente. Ejemplo: \[2^4 = 2 \cdot 2 \cdot 2 \cdot 2 = 16 \]

- Exponente unidad.- Todo número elevado a uno dará el mismo número, por lo tanto no es necesario ponerlo. Ejemplo: \[a^1 = a, \quad a = a^1 \quad 5 = 5^1, \quad 5^1 = 5 \]

- Exponente cero.- Todo número que este elevado al exponente cero dará como resultado uno. Ejemplo: \[a^0 = 1 \]

- Exponente negativo.- Todo número elevado a exponente negativo, es igual a la inversa del número, elevado al exponente positivo. Ejemplo:

\[a^{-4} = \frac{1}{a^4} \]

- Producto de bases iguales.- En el caso de un producto de bases iguales se conserva la base y se suman los exponentes. Ejemplo:

\[(a^4) \cdot (a^3) = a^{4+3} = a^7 \]

- Cociente de bases iguales.- En este caso se conserva la base y se restan los exponentes. Ejemplo:

\[\frac{a^4}{a^2} = a^{4-2} = a^2 \]

\[\frac{aaaa}{aa} = a \cdot a = a^2 \]
Potencia de otra potencia.- En este caso se conserva la base y se multiplican los exponentes.

Ejemplo: \((a^4)^3 = a^{4 \cdot 3} = a^{12}\)

Potencia de un cociente.- En este caso se conserva la base y se multiplican los exponentes. Ejemplo:

\[
\left(\frac{3}{4}\right)^3 = \frac{3^3}{4^3}
\]

Potencia de base 10.- Ejemplos:

\[10^1 = 10; \quad 10^2 = 100; \quad 10^3 = 1000; \quad 10^{-3} = \frac{1}{1000} = 0.001;\]

Ejemplos de aplicación de exponentes.

\[
\frac{(a^4)(a^3)}{a^4} = \frac{a^{4+3}}{a^4} = \frac{a^7}{a^4} = a^{7-4} = a^3
\]

\[
\frac{(5^4)(5)}{5} = \frac{5^{4+1}}{5} = \frac{5^5}{5} = 5^{5-1} = 5^4 = 625
\]

\[
\frac{(a^4)(a^5)}{a^4} = \frac{a^{4+5}}{a^4} = \frac{a^9}{a^4} = a^{9-4} = a^5
\]

\[
\frac{(9^2)(9^4)}{9^3} = \frac{9^6}{9^3} = 9^{6-3} = 9^3 = 729
\]

\[
\frac{(13^2)(13^4)}{13^6} = \frac{13^6}{13^6} = 13^0 = 1
\]
La radicación es la operación inversa de la potenciación.

La raíz cuadrada de un número a es otro número b que elevado a dos es igual al primero. Ejemplo:

$$\sqrt{a} = b ; \quad b^2 = a$$

- 2 es el índice.
- a es el radicando.
- b es la raíz.

La raíz cuadrada de un número a es otro número b que elevado a dos es igual al primero.

Ejemplo: $\sqrt[3]{8} = 2$; y por tanto: $2^3 = 8$

Un número elevado a $1/2$ es lo mismo que la raíz cuadrada de ese número.

Un número elevado a $1/3$ es lo mismo que la raíz cúbica de ese número.

Ejemplo: $(4)^{1/2} = \sqrt[2]{4} = 2$; $(8)^{1/3} = \sqrt[3]{8} = 2$

2. Operaciones con números negativos:

- Suma: Sumar un número negativo a otro es restárselo:
 Ejemplo: $+ 6 + (- 4) = 2$

- Resta:
 - Restar a un número positivo otro negativo es sumárselo:
 Ejemplo: $+ 6 - (- 4) = 10$
 - Tener en cuenta siempre de comenzar por los paréntesis al realizar las operaciones:
 Ejemplo: $- (- 4) = 4$ se lee, menos por menos cuatro es más cuatro.
 Ejemplo: $+ 6 - (- 4) = 10$

- Producto:
 - Un número positivo por otro negativo es un número negativo:
 Ejemplo: $+ 6 \times (- 4) = - 24$
 - El producto de dos números negativos es un número positivo:
 Ejemplo: $- 6 \times - 4 = 24$
• División:
 - Al dividir un número positivo por otro negativo, o a la inversa, se obtiene un cociente negativo:
 Ejemplo: $(+)/(-) = (-); (-)/(+)=(-); \ 6/(-2)=-3; -6/2=-3$
 - Al dividir dos números negativos se obtiene un cociente positivo:
 Ejemplo: $(-)/(-)=(+);\ -6/(-2)=3$

3. Ecuaciones lineales:
¿Cómo se resuelve una ecuación lineal? Por ejemplo, la siguiente ecuación:

$$\frac{2x-3}{2} - \frac{5x-1}{3} = 1$$

Para resolver de manera práctica una ecuación seguiremos el siguiente orden.

1° **Quitar denominadores**
Al multiplicar los dos miembros de una ecuación por el mínimo común múltiplo (M.C.M.) de sus denominadores, se obtiene otra ecuación equivalente a la primera, pero sin denominadores.
Multiplicamos los dos miembros de la igualdad por 6, que es el M.C.M. de los denominadores.
Nos queda: $3(2x-3) -2(5x-1) =6$

2° **Quitar paréntesis**
Se efectúan los productos de los paréntesis, utilizando la propiedad distributiva.
Quitando paréntesis, nos queda: $6x-9 -10x+2=6$

3° **Transposición de términos**
Se disponen todos los términos que llevan x en un miembro y los demás en el otro.
Trasponiendo términos $6x -10x = 9 - 2 + 6$

4° **Reducción de términos semejantes**
De este modo cada miembro de la ecuación queda con un solo término:
$-4x = 13$

5°. **Despejar la incógnita**
Se dividen ambos miembros por el coeficiente de la incógnita o, lo que es lo mismo, se pasa el -4, que esta multiplicando a la x, dividiendo al segundo término de la igualdad.

$$x = \frac{13}{-4} = -\frac{13}{4}$$

Dependiendo de la ecuación a resolver puede ocurrir que alguno de los pasos sea innecesario, se omite y se pasa al siguiente.
4. Ecuaciones lineales. Nueva explicación y ejercicios de refuerzo:

Toda ecuación cuenta con tres elementos: Una incógnita (numero que no se conoce) un primer miembro y un segundo miembro, en el cual se pretende obtener el valor que no conocemos, a través del siguiente procedimiento:

1. - Se despeja a la incógnita quitándole todas aquellas operaciones que le están afectando (de más lejana a la más cercana) dichas operaciones pasarán al otro lado de la igualdad con la operación contraria a la que está realizando a la incógnita.

2. - Una vez despejada la incógnita (dejándola sola) se obtiene su valor elaborando todas aquellas operaciones que pasaron al otro miembro.

3. - Para comprobar el valor sea correcto se sustituye en la ecuación original y se observa que la igualdad permanezca.

Ejemplo:

a) \(x - 4 = 10 \)

\[
\begin{align*}
\text{Comprobación:} \\
x &= 14 \\
14 - 4 &= 10 \\
10 &= 10
\end{align*}
\]

b) \(30 \times x = 60 \)

\[
\begin{align*}
\text{Comprobación:} \\
x &= \frac{60}{30} \\
x &= 2
\end{align*}
\]
7x = 3 (10+5-8)
x = 3 \frac{(10+5-8)}{7}
x = 3 (1)
x = 3

Comprobación:
\[
\frac{7(3)}{3} + 8 - 5 = 10
\]
\[
\frac{21}{3} + 8 - 5 = 10
\]
7+8-5= 10
10 = 10

Ejercicio:

a) \[
\frac{3x}{4} + 8 - 10 = 1
\]
\[
\frac{3x}{4} + 8 = 1 + 10
\]
\[
\frac{3x}{4} = 1 + 10 - 8
\]
\[
x = \frac{(1+10-8)4}{3}
\]
\[
x = \frac{3(4)}{3}
\]
\[
x = \frac{12}{3} ; \quad x = 4
\]

Comprobación:
\[
\frac{3(4)}{4} + 8 - 10 = 1
\]
\[
\frac{12}{4} - 2 = 1
\]
3 - 2 = 1
1 = 1

b) \[
\frac{5x}{6} + 10 - 6 = 9
\]
\[
\frac{5x}{6} + 10 = 9 + 6
\]
\[
\frac{5x}{6} = (9 + 6) - 10
\]
\[
5x = (15 - 10)6
\]
\[
x = \frac{(5)(6)}{5}
\]
\[
x = \frac{30}{5}
\]
x = 6

Comprobación:
\[
\frac{(5)(6)}{6} + 10 - 6 = 9
\]
\[
\frac{30}{6} + 4 = 9
\]
5 + 4 = 9
9 = 9

Profesor: Pascual Santos López
TALLER VIRTUAL DE MÁQUINAS Y EQUIPOS FRIGORÍFICOS
CALOR Y TEMPERATURA

\[
\frac{6b}{7} + 30 - 36 = 0 \quad \frac{6(7)}{7} + 30 - 36 = 0
\]
\[
\frac{6b}{7} + 30 = 36 \quad \frac{42}{7} - 6 = 0
\]
\[
\frac{6b}{7} = 36 - 30 \quad 6 - 6 = 0
\]
\[
6b = (36 - 30)7 \quad 0 = 0
\]
\[
b = \frac{(6)7}{6}
\]
\[
b = \frac{42}{6}
\]
\[
b = 7
\]

d)
\[
\frac{10z}{8} + 52 - 32 = 30 \quad \frac{10(8)}{8} + 52 - 32 = 30
\]
\[
\frac{10z}{8} + 52 = 30 + 32 \quad \frac{80}{8} + 20 = 30
\]
\[
\frac{10z}{8} = (30 + 32) - 52 \quad 10 + 20 = 30
\]
\[
10z = (62 - 52)8 \quad 30 = 30
\]
\[
10z = (10)8
\]
\[
z = \frac{80}{10}
\]
\[
 z = 8
\]

Comprobación:

5. Geometría:
La geometría estudia las figuras en el plano y en el espacio.
Los polígonos son figuras cerradas, formadas por la unión de varios segmentos, llamados lados. Estos polígonos se denominan en función del número de lados: triángulo, cuadrilátero, pentágono, etc.
En un triángulo rectángulo se cumple el Teorema de Pitágoras, que dice: El cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos.

[Diagrama del triángulo rectángulo con las letras correspondientes]

\[a^2 + b^2 = c^2\]
Perímetro:

El perímetro (P) es el contorno de una figura y se mide en mm, cm, metros, etc. (según las unidades de longitud que nos den como datos).

\[b \quad P = a + a + b + b \]

\[2a + 2b \]

Ejemplos:

1º.- La cerca de una casa mide 7m de largo y 3m de ancho ¿Cuál es su perímetro?

Datos: 7m

Fórmula: \(P = 2(3) + 2(7) \)

Solución: \(P = 20 \) m

2º.- Para cercar el jardín de su casa Pedro comprou 30m de alambre, si el ancho del jardín es de 5m ¿Cuánto mide de largo?

Datos: 5m

Fórmula: \(P = 2a + 2b \)

Resultado: Mide 10m de largo

3º.- Un cuadro que se va a enmarcar necesita 40cm de moldura en total, y el largo del cuadro mide 15cm ¿Qué ancho tiene la pintura?

Datos: 15cm

Fórmula: \(P = 2b + 2a \)

Resultado: Mide 5cm de Ancho.

4º.- Para cerrar un barril que tiene forma pentagonal se requiere darle tres vueltas con alambre de púas si cada lado del barril mide 12cm ¿Cuánto alambre se necesita para darle las tres vueltas?

Datos: 12cm

Fórmula: \(P = 5a \)

Resultado: Con 180cm se cierra el barril.

Profesor: Pascual Santos López
Área:

El área (A) es la medida de superficie de una figura, es decir, la porción de plano comprendida en una línea cerrada.

Las unidades de áreas son cuadrados (m², cm², etc.)

A toda área corresponde un número positivo.

Si dividimos una figura en dos o más partes el área total es igual a la suma de las áreas de las demás partes.

Si dividimos una figura en dos o más partes el área de una de las partes es igual al área total menos el área de las demás partes.

Ejemplos de cálculo de áreas:

<table>
<thead>
<tr>
<th>Datos</th>
<th>Formula</th>
<th>Resultado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuadrado + Triángulo</td>
<td>Cuadrado: A = a²</td>
<td>Área total = 16+4 = 20m²</td>
</tr>
<tr>
<td>h</td>
<td>4² = 16</td>
<td></td>
</tr>
<tr>
<td>4m</td>
<td>2m</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>

Triángulo = b . h / 2 = (2x4)/2 = 4

Si un triángulo tiene un área de 24m² y su altura es de 8m ¿Cuánto mide su base?

Datos: | Formula | Resultado |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A = b . h/2</td>
<td></td>
<td>La base mide 6m.</td>
</tr>
<tr>
<td>Sustitución:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 = b(8)/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24(2)/8 = 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Formulario básico de áreas

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Figura</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triángulo</td>
<td></td>
<td>(A = \frac{b \cdot h}{2})</td>
</tr>
<tr>
<td>Rectángulo</td>
<td></td>
<td>(A = b \cdot h)</td>
</tr>
<tr>
<td>Cuadrado</td>
<td></td>
<td>(A = a^2)</td>
</tr>
<tr>
<td>Trapecio</td>
<td></td>
<td>(A = \frac{(B + b) \cdot h}{2})</td>
</tr>
<tr>
<td>Circulo</td>
<td></td>
<td>(A = \pi r^2)</td>
</tr>
</tbody>
</table>

Volumen:
Un cuerpo geométrico es un espacio limitado cuyas dimensiones son: longitud, altura y anchura.
Las unidades de volumen son cubos (m\(^3\), cm\(^3\), etc.)
La unidad de volumen es el producto de tres unidades de longitud.

Clasificación de los cuerpos sólidos.
Los diferentes cuerpos sólidos se pueden clasificar en:
Los que tienen todas sus caras planas, a los que les llaman **poliedros**.
Los cuerpos redondos; son los que tienen una o varias caras con superficies curvas. Los **poliedros** se clasifican a su vez en regulares e irregulares.

Poliedros Regulares:
Son aquellos cuyas caras son polígonos regulares y todas son iguales. Y son:
- Tetraedro: 4 caras en forma de triángulo equilátero.
- Hexaedro: 6 caras en forma de cuadrado(cubo)
- Octaedro: 8 caras en forma de triángulo equilátero.
- Dodecaedro: doce caras en forma de pentágono
- Icosaedro: 20 caras en forma de triángulo equilátero.
Poliedros Irregulares:
Son aquellas cuyas bases son polígonos diferentes a las caras laterales y son los prismas y las pirámides.

<table>
<thead>
<tr>
<th>Poliedros</th>
<th>Regulares</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tetraedro</td>
</tr>
<tr>
<td></td>
<td>hexaedro</td>
</tr>
<tr>
<td></td>
<td>Octaedro, etc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sólidos</th>
<th>Irregulares</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prisma {ejemplo el paralelepípedo</td>
</tr>
<tr>
<td></td>
<td>Pirámide</td>
</tr>
</tbody>
</table>

Cuerpos Redondos { cilindros, esfera y cono.}

Los prismas son poliedros irregulares con dos caras que son polígonos iguales situados en planos paralelos y las demás caras son paralelogramos (rectángulo o cuadrado, rombo o romboide).

Las pirámides son poliedros irregulares en el que la base es un polígono cualquiera y sus otras caras, son triángulos que se unen en un punto llamado vértice.

Las pirámides se pueden clasificar en: triangulares, cuadrangulares, etc. dependiendo de la forma de la base.

Ejemplo de cálculo de volúmenes:
En una cisterna de 8m3 se está llenando de agua, si el nivel está a tres cuartas partes de su capacidad, ¿Qué volumen falta para que se llene?

Datos: volumen = 8m3
Formula
Resultado.

$$V = a^3$$
$$a = \sqrt[3]{8} = 2$$
$$2^2 = 4$$
$$6m^3$$

El volumen de un prisma rectangular cuya altura es de 4/5m. El largo de la base es de 3/4m y el ancho de 1/2m. ¿Cuál es su volumen?

Datos:
Formula
Resultado

$$V = Bh$$
$$B = (4/5)(3/4) = 3/5$$
$$V = (3/5)(1/2) = 3/10$$
$$El V = 33m^3$$

(capacidad)
Volumen total de un prisma triangular cuya base es de 4/5m de altura la base es de 3/4m y la altura de la base es de 2/5m calcular el volumen.

Datos:

\[
\begin{align*}
V &= \frac{(B \times h)}{3(2)} \\
B &= \left(\frac{4}{5}\right)\left(\frac{3}{4}\right) = \frac{3}{5} \\
h &= \frac{2}{5} \\
V &= \frac{3}{5}\left(\frac{2}{5}\right) = \frac{9}{25} \\
V &= 0.36 \\
\end{align*}
\]

Para saber más sobre matemáticas se pueden visitar las siguientes páginas:

http://carmesimatematic.webcindario.com/MSecundaria1.htm

http://roble.pntic.mec.es/~jarran2/cabriweb/

http://roble.pntic.mec.es/~jarran2/cabriweb/1triangulos/teoremaitagoras.htm

Apéndice Sistema Internacional de Unidades de medida:

El Sistema Internacional de Unidades de medida, obligatorio en España y vigente en la Unión Europea (REAL DECRETO 1317/1989, de 27 de octubre de 1989 por el que se establecen las Unidades Legales de Medida, BOE del 3 de noviembre).

Veamos algunas de sus unidades:

Unidades SI básicas.

<table>
<thead>
<tr>
<th>Magnitud</th>
<th>Nombre</th>
<th>Símbolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud</td>
<td>metro</td>
<td>m</td>
</tr>
<tr>
<td>Masa</td>
<td>kilogramo</td>
<td>kg</td>
</tr>
<tr>
<td>Tiempo</td>
<td>segundo</td>
<td>s</td>
</tr>
<tr>
<td>Intensidad de corriente eléctrica</td>
<td>ampere</td>
<td>A</td>
</tr>
<tr>
<td>Temperatura termodinámica</td>
<td>kelvin</td>
<td>K</td>
</tr>
<tr>
<td>Cantidad de sustancia</td>
<td>mol</td>
<td>mol</td>
</tr>
<tr>
<td>Intensidad luminosa</td>
<td>candela</td>
<td>cd</td>
</tr>
</tbody>
</table>
Unidad de longitud: El metro es la longitud de trayecto recorrido en el vacío por la luz durante un tiempo de 1/299 792 458 de segundo.

Unidad de masa: El kilogramo (kg) es igual a la masa del prototipo internacional del kilogramo.

Unidad de tiempo: El segundo (s) es la duración de 9 192 631 770 periodos de la radiación correspondiente a la transición entre los dos niveles hiperfinos del estado fundamental del átomo de cesio 133.

Unidad de intensidad de corriente eléctrica: El ampere (A) es la intensidad de una corriente constante que manteniéndose en dos conductores paralelos, rectilíneos, de longitud infinita, de sección circular despreciable y situados a una distancia de un metro uno de otro en el vacío, produciría una fuerza igual a 2·10⁻⁷ newton por metro de longitud.

Unidad de temperatura termodinámica: El kelvin (K), unidad de temperatura termodinámica, es la fracción 1/273,16 de la temperatura termodinámica del punto triple del agua.

Observación: Además de la temperatura termodinámica (símbolo T) expresada en kelvins, se utiliza también la temperatura Celsius (símbolo t) definida por la ecuación
\[t = T - T_0 \]

Donde \(T_0 = 273,15 \) K por definición.

Unidad de cantidad de sustancia: El mol (mol) es la cantidad de sustancia de un sistema que contiene tantas entidades elementales como átomos hay en 0,012 kilogramos de carbono 12. Cuando se emplee el mol, deben especificarse las unidades elementales, que pueden ser átomos, moléculas, iones, electrones u otras partículas o grupos especificados de tales partículas.

Unidad de intensidad luminosa: La candela (cd) es la unidad luminosa, en una dirección dada, de una fuente que emite una radiación monocromática de frecuencia 540·10¹² hertz y cuya intensidad energética en dicha dirección es 1/683 watt por estereorradián.
1º. Unidades SI derivadas

Las unidades SI derivadas se definen de forma que sean coherentes con las unidades básicas y suplementarias, es decir, se definen por expresiones algebraicas bajo la forma de productos de potencias de las unidades SI básicas y/o suplementarias con un factor numérico igual 1.

Varias de estas unidades SI derivadas se expresan simplemente a partir de las unidades SI básicas y suplementarias. Otras han recibido un nombre especial y un símbolo particular.

2º. Unidades SI derivadas expresadas a partir de unidades básicas y suplementarias.

<table>
<thead>
<tr>
<th>Magnitud</th>
<th>Nombre</th>
<th>Símbolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficie</td>
<td>metro cuadrado</td>
<td>m²</td>
</tr>
<tr>
<td>Volumen</td>
<td>metro cúbico</td>
<td>m³</td>
</tr>
<tr>
<td>Velocidad</td>
<td>metro por segundo</td>
<td>m/s</td>
</tr>
<tr>
<td>Aceleración</td>
<td>metro por segundo cuadrado</td>
<td>m/s²</td>
</tr>
<tr>
<td>Número de ondas</td>
<td>metro a la potencia menos uno</td>
<td>m⁻¹</td>
</tr>
<tr>
<td>Masa en volumen</td>
<td>kilogramo por metro cúbico</td>
<td>kg/m³</td>
</tr>
<tr>
<td>Velocidad angular</td>
<td>radián por segundo</td>
<td>rad/s</td>
</tr>
<tr>
<td>Aceleración angular</td>
<td>radián por segundo cuadrado</td>
<td>rad/s²</td>
</tr>
</tbody>
</table>

Unidad de velocidad Un metro por segundo (m/s o m·s⁻¹) es la velocidad de un cuerpo que, con movimiento uniforme, recorre, una longitud de un metro en 1 segundo.

Unidad de aceleración Un metro por segundo cuadrado (m/s² o m·s⁻²) es la aceleración de un cuerpo, animado de movimiento uniformemente variado, cuya velocidad varía cada segundo, 1 m/s.

Unidad de número de ondas Un metro a la potencia menos uno (m⁻¹) es el número de ondas de una radiación monocromática cuya longitud de onda es igual a 1 metro.

Unidad de velocidad angular Un radián por segundo (rad/s o rad·s⁻¹) es la velocidad angular de un cuerpo que, con una rotación uniforme alrededor de un eje fijo, gira en 1 segundo, 1 radián.

Unidad de aceleración angular Un radián por segundo cuadrado (rad/s² o rad·s⁻²) es la
angular aceleración angular de un cuerpo animado de una rotación uniformemente variada alrededor de un eje fijo, cuya velocidad angular, varía 1 radián por segundo, en 1 segundo.

3°. **Unidades SI derivadas con nombres y símbolos especiales.**

<table>
<thead>
<tr>
<th>Magnitud</th>
<th>Nombre</th>
<th>Símbolo</th>
<th>Expresión en otras unidades SI</th>
<th>Expresión en unidades SI básicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia</td>
<td>hertz</td>
<td>Hz</td>
<td>s⁻¹</td>
<td>s⁻¹</td>
</tr>
<tr>
<td>Fuerza</td>
<td>newton</td>
<td>N</td>
<td>m·kg·s⁻²</td>
<td>m·kg·s⁻²</td>
</tr>
<tr>
<td>Presión</td>
<td>pascal</td>
<td>Pa</td>
<td>N·m⁻²</td>
<td>m⁻¹·kg·s⁻²</td>
</tr>
<tr>
<td>Energía, trabajo, cantidad de calor</td>
<td>joule</td>
<td>J</td>
<td>N·m</td>
<td>m²·kg·s⁻²</td>
</tr>
<tr>
<td>Potencia</td>
<td>watt</td>
<td>W</td>
<td>J·s⁻¹</td>
<td>m²·kg·s⁻³</td>
</tr>
<tr>
<td>Cantidad de electricidad, carga eléctrica</td>
<td>coulomb</td>
<td>C</td>
<td>s·A</td>
<td>s·A</td>
</tr>
<tr>
<td>Potencial eléctrico, fuerza electromotriz</td>
<td>volt</td>
<td>V</td>
<td>W·A⁻¹</td>
<td>m²·kg·s⁻³·A⁻¹</td>
</tr>
<tr>
<td>Resistencia eléctrica</td>
<td>ohm</td>
<td>Ω</td>
<td>V·A⁻¹</td>
<td>m²·kg·s⁻³·A⁻²</td>
</tr>
<tr>
<td>Capacidad eléctrica</td>
<td>farad</td>
<td>F</td>
<td>C·V⁻¹</td>
<td>m²·kg⁻¹·s⁴·A²</td>
</tr>
<tr>
<td>Flujo magnético</td>
<td>weber</td>
<td>Wb</td>
<td>V·s</td>
<td>m²·kg·s⁻²·A⁻¹</td>
</tr>
<tr>
<td>Inducción magnética</td>
<td>tesla</td>
<td>T</td>
<td>Wb·m²</td>
<td>kg·s⁻²·A¹</td>
</tr>
<tr>
<td>Inductancia</td>
<td>henry</td>
<td>H</td>
<td>Wb·A⁻¹</td>
<td>m²·kg·s⁻²·A⁻²</td>
</tr>
</tbody>
</table>

Unidad de frecuencia Un hertz (Hz) es la frecuencia de un fenómeno periódico cuyo periodo es 1 segundo.

Unidad de fuerza Un newton (N) es la fuerza que, aplicada a un cuerpo que tiene una masa de 1 kilogramo, le comunica una aceleración de 1 metro por segundo cuadrado.

Unidad de presión Un pascal (Pa) es la presión uniforme que, actuando sobre una superficie plana de 1 metro cuadrado, ejerce perpendicularmente a esta superficie una fuerza total de 1 newton.
Unidad de energía, Un joule (J) es el trabajo producido por una fuerza de 1 newton, cuyo punto de aplicación se desplaza 1 metro en la dirección de la fuerza.

Unidad de potencia, Un watt (W) es la potencia que da lugar a una producción de energía igual a 1 joule por segundo.

Unidad de cantidad de Un coulomb (C) es la cantidad de electricidad eléctrica, carga transportada en 1 segundo por una corriente de intensidad 1 ampere.

Unidad de potencial Un volt (V) es la diferencia de potencial eléctrico que fuerza existe entre dos puntos de un hilo conductor que transporta una corriente de intensidad constante de 1 ampere cuando la potencia disipada entre estos puntos es igual a 1 watt.

Unidad de resistencia eléctrica Un ohm (Ω) es la resistencia eléctrica que existe entre dos puntos de un conductor cuando una diferencia de potencial constante de 1 volt aplicada entre estos dos puntos produce, en dicho conductor, una corriente de intensidad 1 ampere, cuando no haya fuerza electromotriz en el conductor.

Unidad de capacidad eléctrica Un farad (F) es la capacidad de un condensador eléctrico que entre sus armaduras aparece una diferencia de potencial eléctrico de 1 volt, cuando está cargado con una cantidad de electricidad igual a 1 coulomb.

Unidad de flujo magnético Un weber (Wb) es el flujo magnético que, al atravesar un circuito de una sola espira produce en la misma una fuerza electromotriz de 1 volt si se anula dicho flujo en un segundo por decaimiento uniforme.

Unidad de inducción Una tesla (T) es la inducción magnética uniforme que, repartida normalmente sobre una superficie de 1 metro cuadrado, produce a través de esta superficie un flujo magnético total de 1 weber.

Unidad de inductancia Un henry (H) es la inductancia eléctrica de un circuito cerrado en el que se produce una fuerza electromotriz...
de 1 volt, cuando la corriente eléctrica que recorre el circuito varía uniformemente a razón de un ampere por segundo.

4º. Unidades SI derivadas expresadas a partir de las que tienen nombres especiales

<table>
<thead>
<tr>
<th>Magnitud</th>
<th>Nombre</th>
<th>Símbolo</th>
<th>Expresión en unidades SI básicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosidad dinámica</td>
<td>pascal segundo</td>
<td>Pa·s</td>
<td>$m^{-1}·kg·s^{-1}$</td>
</tr>
<tr>
<td>Entropía</td>
<td>joule por kelvin</td>
<td>J/K</td>
<td>$m^2·kg·s^{-2}·K^{-1}$</td>
</tr>
<tr>
<td>Capacidad térmica másica</td>
<td>joule por kilogramo kelvin</td>
<td>J/(kg·K)</td>
<td>$m^2·s^{-2}·K^{-1}$</td>
</tr>
<tr>
<td>Conductividad térmica</td>
<td>watt por metro kelvin</td>
<td>W/(m·K)</td>
<td>$m·kg·s^{-3}·K^{-1}$</td>
</tr>
<tr>
<td>Intensidad del campo</td>
<td>volt por metro</td>
<td>V/m</td>
<td>$m·kg·s^{-3}·A^{-1}$</td>
</tr>
</tbody>
</table>

Unidad de viscosidad dinámica: Un pascal segundo (Pa·s) es la viscosidad dinámica de un fluido homogéneo, en el cual, el movimiento rectilíneo y uniforme de una superficie plana de 1 metro cuadrado, da lugar a una fuerza retardatriz de 1 newton, cuando hay una diferencia de velocidad de 1 metro por segundo entre dos planos paralelos separados por 1 metro de distancia.

Unidad de entropía: Un joule por kelvin (J/K) es el aumento de entropía de un sistema que recibe una cantidad de calor de 1 joule, a la temperatura termodinámica constante de 1 kelvin, siempre que en el sistema no tenga lugar ninguna transformación irreversible.

Unidad de capacidad térmica másica: Un joule por kilogramo kelvin (J/(kg·K)) es la capacidad térmica másica de un cuerpo homogéneo de una masa de 1 kilogramo, en el que el aporte de una cantidad de calor de un joule, produce una elevación de temperatura termodinámica de 1 kelvin.

Unidad de conductividad térmica: Un watt por metro kelvin (W·m/K) es la conductividad térmica de un cuerpo homogéneo.
isótropo, en la que una diferencia de temperatura de 1 kelvin entre dos planos paralelos, de área 1 metro cuadrado y distantes 1 metro, produce entre estos planos un flujo térmico de 1 watt.

Unidad de intensidad del Un volt por metro (V/m) es la intensidad de un campo eléctrico, que ejerce una fuerza de 1 newton sobre un cuerpo cargado con una cantidad de electricidad de 1 coulomb.

5º. Múltiplos y submúltiplos decimales

<table>
<thead>
<tr>
<th>Factor</th>
<th>Prefijo</th>
<th>Símbolo</th>
<th>Factor</th>
<th>Prefijo</th>
<th>Símbolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{24}</td>
<td>yotta</td>
<td>Y</td>
<td>10^{-1}</td>
<td>deci</td>
<td>d</td>
</tr>
<tr>
<td>10^{21}</td>
<td>zeta</td>
<td>Z</td>
<td>10^{-2}</td>
<td>centi</td>
<td>c</td>
</tr>
<tr>
<td>10^{18}</td>
<td>exa</td>
<td>E</td>
<td>10^{-3}</td>
<td>mili</td>
<td>m</td>
</tr>
<tr>
<td>10^{15}</td>
<td>peta</td>
<td>P</td>
<td>10^{-6}</td>
<td>micro</td>
<td>µ</td>
</tr>
<tr>
<td>10^{12}</td>
<td>tera</td>
<td>T</td>
<td>10^{-9}</td>
<td>nano</td>
<td>n</td>
</tr>
<tr>
<td>10^{9}</td>
<td>giga</td>
<td>G</td>
<td>10^{-12}</td>
<td>pico</td>
<td>p</td>
</tr>
<tr>
<td>10^{6}</td>
<td>mega</td>
<td>M</td>
<td>10^{-15}</td>
<td>femto</td>
<td>f</td>
</tr>
<tr>
<td>10^{3}</td>
<td>kilo</td>
<td>k</td>
<td>10^{-18}</td>
<td>atto</td>
<td>a</td>
</tr>
<tr>
<td>10^{2}</td>
<td>hecto</td>
<td>h</td>
<td>10^{-21}</td>
<td>zepto</td>
<td>z</td>
</tr>
<tr>
<td>10^{1}</td>
<td>deca</td>
<td>da</td>
<td>10^{-24}</td>
<td>yocto</td>
<td>y</td>
</tr>
</tbody>
</table>
6º. Tabla de conversión de unidades

Unidades métricas y británicas

<table>
<thead>
<tr>
<th>Para obtener</th>
<th>a partir de</th>
<th>multiplicar por</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,281 metros (m)</td>
<td>pies</td>
<td>0,3048</td>
</tr>
<tr>
<td>10,76 metros cuadrados (m²)</td>
<td>pies cuadrados (ft²)</td>
<td>0,0929</td>
</tr>
<tr>
<td>35,32 metros cúbicos (m³)</td>
<td>pies cúbicos (ft³)</td>
<td>0,0283</td>
</tr>
<tr>
<td>0,22 litros (l)</td>
<td>galones británicos</td>
<td>4,546</td>
</tr>
<tr>
<td>0,264 litros (l)</td>
<td>galones EE.UU.</td>
<td>3,785</td>
</tr>
<tr>
<td>0,0353 litros (l)</td>
<td>pies cúbicos (ft³)</td>
<td>28,3168</td>
</tr>
<tr>
<td>2,205 kilogramos (kg)</td>
<td>libras (lb)</td>
<td>0,454</td>
</tr>
<tr>
<td>0,00142 kilogramos por metro</td>
<td>libras por pulgada cuadrada (lb/in²)</td>
<td>703</td>
</tr>
<tr>
<td>0,0624 kilogramos por metro</td>
<td>Unidades térmicas británicas (Btu)</td>
<td>16,0185</td>
</tr>
<tr>
<td>3,97 kilocalorías (kcal)</td>
<td>o EE.UU.)</td>
<td>0,746</td>
</tr>
<tr>
<td>1,341 kilovatios (kW)</td>
<td>hp</td>
<td>642</td>
</tr>
<tr>
<td>0,00156 kcal por hora (kcal/h)</td>
<td>kilovatios (kW)</td>
<td>0,860</td>
</tr>
<tr>
<td>1,163 kcal/h × 1 000</td>
<td>tonelada de refrigeración (EE.UU.)</td>
<td>3,024</td>
</tr>
<tr>
<td>0,3307 kcal/h × 1 000</td>
<td>Btu/ft² h°F</td>
<td>4,882</td>
</tr>
<tr>
<td>0,2048 kcal/m² h°C</td>
<td>Btu in/ft² h°F</td>
<td>0,1240</td>
</tr>
<tr>
<td>8,064 kcal/m h°C</td>
<td>Btu/lb °F</td>
<td>1</td>
</tr>
<tr>
<td>1 kcal/kg °C</td>
<td>Btu/lb</td>
<td>0,5556</td>
</tr>
<tr>
<td>1,8 kcal/kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Multiplicar por esta cifra para convertir de **en**

Para saber más sobre unidades se puede visitar la página siguiente:

Ejercicios de conversión entre escalas de temperatura:

1º. Pasar de 78ºC a °R °F °K

\[\begin{align*}
°F &= \frac{9}{5} °C + 32 \\
&= \frac{9}{5} 78 + 32 \\
&= 140.4 + 32 \\
&= 172.4° F
\]
\[\begin{align*}
°R &= °F + 460 \\
&= 172.4 + 460 \\
&= 632.4° R
\]
\[\begin{align*}
°K &= °C + 273 \\
&= 78 + 273 \\
&= 351° K
\]

2º. Pasar de 165º F a °C °R °K

\[\begin{align*}
°C &= \frac{5}{9} (°F - 32) \\
&= \frac{5}{9} (165 - 32) \\
&= 5/9 133 \\
&= 73.8° C
\]
\[\begin{align*}
°R &= °F + 640 \\
&= 165 + 640 \\
&= 625° R
\]
\[\begin{align*}
°K &= °C + 273 \\
&= 73.8 + 273 \\
&= 346.8° K
\]

3º. Pasar de 590º R a °F °C °K

\[\begin{align*}
°F &= °R - 460 \\
&= 590 - 460 \\
&= 130° F
\]
\[\begin{align*}
°C &= \frac{5}{9} (°F - 32) \\
&= \frac{5}{9} (130 - 32) \\
&= 5/9 98 \\
&= 54.4° C
\]
\[\begin{align*}
°K &= °C + 273 \\
&= 54.4 + 273 \\
&= 327.4° K
\]

4º. Pasar de 330º K a °F °C °R

\[\begin{align*}
°C &= K° - 273 \\
&= 330 - 273 \\
&= 57° C
\]
\[\begin{align*}
°F &= \frac{9}{5} °C + 32 \\
&= (594) 102.6 + 32 \\
&= (626) 134.6° F
\]
\[\begin{align*}
°R &= °F + 460 \\
&= (594) + 460 \\
&= (1086° R)
\]

Bibliografía:

- "Principios de Refrigeración". Editorial CECSA. Roy J. Dossat.
 - http://carmesimatematic.webcindario.com/MSecundaria1.htm
 - http://roble.pntic.mec.es/~jarran2/cabriweb/1triangulos/teoremapitagoras.htm